A multi-directional ground filtering algorithm for airborne LIDAR

نویسندگان

  • Xuelian Meng
  • Le Wang
  • José Luis Silván-Cárdenas
  • Nate Currit
چکیده

Automatic ground filtering for Light Detection And Ranging (LIDAR) data is a critical process for Digital Terrain Model (DTM) and three-dimensional urban model generation. Although researchers have developed many methods to separate bare ground from other urban features, the problem has not been fully solved due to the similar characteristics possessed by ground and non-ground objects, especially on abrupt surfaces. Current methods can be grouped into two major categories: neighborhood-based approaches and directional filtering. In this study, following the direction of the second branch, we propose a new Multi-directional Ground Filtering (MGF) algorithm to incorporate a two-dimensional neighborhood in the directional scanning so as to prevent the errors introduced by the sensitivity to directions. Besides this, the MGF algorithm explores the utility of identifying pattern varieties in different directions across an image. The authors conducted a comprehensive test of the performance on fifteen study sites and compared our results to eight other publicized methods based on the Kappa coefficients calculated from the error matrices reported by ISPRS. Overall, the MGF filter produces a promising performance in both urban and forest areas. The size and shape of non-ground objects do not pose significant influence on the performance of the MGF algorithm. The fact that MGF algorithm is robust to two commonly required parameters, slope and elevation difference thresholds, has added practical merits to be adopted in different landscapes. © 2008 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filtering Airborne Lidar Data by an Improved Morphological Method Based on Multi-gradient Analysis

The technology of airborne Light Detection And Ranging (LIDAR) is capable of acquiring dense and accurate 3D geospatial data. Although many related efforts have been made by a lot of researchers in the last few years, LIDAR data filtering is still a challenging task, especially for area with high relief or hybrid geographic features. In order to address the bare-ground extraction from LIDAR poi...

متن کامل

Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features

Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...

متن کامل

Dem Generation from Airborne Lidar Data

Airborne Lidar (light detection and ranging) sensors provide dense height information of large areas in an efficient manner. But for the production of digital elevation model (DEM) from the point cloud, the filtering of the point cloud should be carried out in order to remove points representing surface of non-ground objects. According to the deficiencies of slope based method, a novel filterin...

متن کامل

Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues

This paper reviews LiDAR ground filtering algorithms used in the process of creating Digital Elevation Models. We discuss critical issues for the development and application of LiDAR ground filtering algorithms, including filtering procedures for different feature types, and criteria for study site selection, accuracy assessment, and algorithm classification. This review highlights three featur...

متن کامل

Adaptive Slope Filtering of Airborne LiDAR Data in Urban Areas for Digital Terrain Model (DTM) Generation

A filtering algorithm is proposed that accurately extracts ground data from airborne light detection and ranging (LiDAR) measurements and generates an estimated digital terrain model (DTM). The proposed algorithm utilizes planar surface features and connectivity with locally lowest points to improve the extraction of ground points (GPs). A slope parameter used in the proposed algorithm is updat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008